12 research outputs found

    Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit

    Get PDF
    Traumatic spinal cord injury results in persistent disability due to disconnection of surviving neural elements. Neural stem cell transplantation has been proposed as a therapeutic option, but optimal cell type and mechanistic aspects remain poorly defined. Here, we describe robust engraftment into lesioned immunodeficient mice of human neuroepithelial stem cells derived from the developing spinal cord and maintained in self-renewing adherent conditions for long periods. Extensive elongation of both graft and host axons occurs. Improved functional recovery after transplantation depends on neural relay function through the grafted neurons, requires the matching of neural identity to the anatomical site of injury, and is accompanied by expression of specific marker proteins. Thus, human neuroepithelial stem cells may provide an anatomically specific relay function for spinal cord injury recovery

    Chondroitinase ABC-Mediated Plasticity of Spinal Sensory Function

    No full text
    Experimental therapeutics designed to enhance recovery from spinal cord injury (SCI) primarily focus on augmenting the growth of damaged axons by elevating their intrinsic growth potential and/or by nullifying the influence of inhibitory proteins present in the mature CNS. However, these strategies may also influence the wiring of intact pathways. The direct contribution of such effects to functional restoration after injury has been mooted, but as yet not been described. Here, we provide evidence to support the hypothesis that reorganization of intact spinal circuitry enhances function after SCI. Adult rats that underwent unilateral cervical spared-root lesion (rhizotomy of C5, C6, C8, and T1, sparing C7) exhibited profound sensory deficits for 4 weeks after injury. Delivery of a focal intraspinal injection of the chondroitin sulfate proteoglycan-degrading enzyme chondroitinase ABC (ChABC) was sufficient to restore sensory function after lesion. In vivo electrophysiological recordings confirm that behavioral recovery observed in ChABC-treated rats was consequent on reorganization of intact C7 primary afferent terminals and not regeneration of rhizotomized afferents back into the spinal cord within adjacent segments. These data confirm that intact spinal circuits have a profound influence on functional restoration after SCI. Furthermore, comprehensive understanding of these targets may lead to therapeutic interventions that can be spatially tailored to specific circuitry, thereby reducing unwanted maladaptive axon growth of distal pathways

    Reg-2 expression in dorsal root ganglion neurons after adjuvant-induced monoarthritis

    No full text
    Reg-2 is a secreted protein that is expressed de novo in motoneurons, sympathetic neurons, and dorsal root ganglion (DRG) neurons after nerve injury and which can act as a Schwann cell mitogen. We now show that Reg-2 is also upregulated by DRG neurons in inflammation with a very unusual expression pattern. In a rat model of monoarthritis, Reg-2 immunoreactivity was detected in DRG neurons at 1 day, peaked at 3 days (in 11.6% of DRG neurons), and was still present at 10 days (in 5%). Expression was almost exclusively in the population of DRG neurons that expresses the purinoceptor P2X3 and binding sites for the lectin Griffonia simplicifolia IB4, and which is known to respond to glial cell line-derived neurotrophic factor (GDNF). Immunoreactivity was present in DRG cell bodies and central terminals in the dorsal horn of the spinal cord. In contrast, very little expression was seen in the nerve growth factor (NGF) responsive and substance P expressing population. However intrathecal delivery of GDNF did not induce Reg-2 expression, but leukemia inhibitory factor (LIF) had a dramatic effect, inducing Reg-2 immunoreactivity in 39% of DRG neurons and 62% of P2X3 cells. Changes in inflammation have previously been observed predominantly in the neuropeptide expressing, NGF responsive, DRG neurons. Our results show that changes also take place in the IB4 population, possibly driven by members of the LIF family of neuropoietic cytokines. In addition, the presence of Reg-2 in central axon terminals implicates Reg-2 as a possible modulator of second order dorsal horn cells
    corecore